Algebra of Limits

1. Additive Method

Under this method, the limit of the sum of any two, or more function say f(X) and g(x) is determined by the following model.

Lim [f(x) ± g(x)] = lim f(x) ± lim g(x)

x→ a            x → a              x → a

Example

Limit     ( x² + 2x + 5 ) = lim x²  + lim 2x + lim 5

x→ 0           x→ 0             x→ 0

= 02 + 2 × 0 + 5 = 5

2. Multiplicative Method

Under this method, the limit of the product of any two, or more functions say f(x) and f(g) is computed by the following model:

Lim [f(x) . g(x)] = lim f(x) . lim g(x)

x→ a            x → a              x → a

Example

Lim (x-4) (x + 5) = lim (x – 4) × lim (x + 5)

x→ 3                                                      x→ 3

= (3 – 4) × (3 + 5) = -8

3. Constantive Method

Under this method, the limit of the product of a constant say K, and a function say f(x) is determined by the following model:

Lim K. f(x) = K lim f(x)

x→ a            x → a

Example

Lim 5 x 3 + 3 x 2 – 2x = lim 5 x 3 + lim 3 x 2 – lim 2x

x→ 2            x → 2               x → a

= 5 × 23 + 3 × 22 – 2 × 2 = 48

4. Dividing Method

Under this method, the limit of the quotient of any two functions say f(x), and g(x) is determined by the following model:

Dividing Method